

A Lesson in Spray Quality and Droplet Size

Carol Black Extension Specialist Washington State University

Application Exclusion Zone in Outdoor Production

- EPA will explain in next talk
- Distance determined by
 - Application equipment spray/granule
 - Air
 - Airblast
 - Fumigant, mist, fog
 - If spray
 - droplet spectrum, noted at 294 microns
 - Medium spray using VMD >294 microns

Let's Talk about Droplets and Spray Quality

Terminology - Micron - µm

One micron (μ m) =1/25,000 inch = 1/1,000 millimeter

pencil lead paper clip staple toothbrush bristle sewing thread human hair point of a needle 2000 (μm) 850 (μm) 420 (μm) 300 (μm) 150 (μm) 100 (μm) 1-25 (μm)

thunderstorm rain heavy rain light rain heavy drizzle fine drizzle fine mist fog

Driftable fines under 150 µm

Spray Quality and the VMD (volume median diameter)

Spray Quality - Explained

Spray Quality - Explained

Lot's more basketballs: > 500 µm

Spray Quality Categories								
ASABE Standa	ard S-572.1							
Category (symbol)	Color Code							
Extra Fine (XF)	Purple							
Very Fine (VF)	Red							
Fine (F)	Orange							
Medium (M)	Yellow							
Coarse (C)	Blue							
Very Coarse (VC)	Green							
Extra Coarse (XC)	White							
Ultra Coarse (UC)	Black							

Spray Quality

Based on ASABE 572.1 Standards

Referenced in nozzle charts

American Society of Agricultural and Biological Engineers

Droplet Sizing

- Measured with a laser-based instrument. Both reference and nozzles to be classified
- Verification and calibration to known standards essential
- Nozzle oriented to scan the entire spray plume
- Ensure a representative crosssectional sample of the spray plume is obtained

ASABE 572.1 Spray Quality Standard Plot Volume (- - -) of Droplet Sizes on a Reference Graph

Spray Quality

Spray Quality*	Size of Droplets	VMD Range (Microns**)	Color Code	Retention on Difficult to Wet Leaves	Used for	Drift Potentia
Extremely Fine	Small	<60	Purple	Excellent	Exceptions	High
Very Fine		61-105	Red	Excellent	Exceptions	
Fine		106-235	Orange	Very Good	Good Cover	
Medium		236-340	Yellow	Good	Most Products	
Coarse		341-403	Blue	Moderate	Systemic Herbicides	
Very Coarse		404-502	Green	Poor	Soil Herbicides	
Extremely Coarse		503-665	White	Very Poor	Liquid Fertilizer	
Ultra Coarse	Large	>665	Black	Very Poor	Liquid Fertilizer	Low

Spray Quality Categories								
ASABE Standa	ard S-572.1							
Category (symbol)	Color Code							
Extra Fine (XF)	Purple							
Very Fine (VF)	Red							
Fine (F)	Orange							
Medium (M)	Yellow							
Coarse (C)	Blue							
Very Coarse (VC)	Green							
Extra Coarse (XC)	White							
Ultra Coarse (UC)	Black							

TXR ConeJet[®] Hollow Cone Spray Tips See Pages 20 & 42

Spray Quality Color does not

equate to Nozzle Color

-

Al3070 Air Induction Dual Pattern Flat Spray Tips See Page 18

The Color Confusion Challenge: Tips and Spray Quality

0

10

es

XR TeeJet® (XR)

ACA.				PSI			
ag .	15	20	25	30	40	50	60
XR8001	F	F	F	F	F	F	F
XR80015	М	F	F	F	F	F	F
XR8002	М	М	F	F	F	F	F
XR80025	М	М	F	F	F	F	F
XR8003	М	М	М	F	F	F	F
XR80035	М	М	М	М	М	F	F
XR8004	С	М	М	М	М	F	F
XR8005	С	С	М	М	М	М	F
XR8006	C	С	С	М	М	М	М
XR8008	VC	VC	С	C	М	М	М
XR8010	XC	VC	VC	С	С	С	С
(R8015	XC	XC	VC	VC	VC	C	С
XR11001	F	F	F	F	F	F	VF
XR110015	F	F	F	F	F	F	F
KR11002	М	F	F	F	F	F	F
XR110025	М	M	F	F	F	F	F
XR11003	М	М	М	F	F	F	F
XR11004	М	М	М	М	М	F	F
XR11005	М	М	М	М	М	F	F
KR11006	С	М	М	М	М	М	F
XR11008	С	C	C	C	М	М	М
XR11010	VC	C	С	С	М	М	М
		1	1			1	

é		PSI	DR	OP
			80°	1100
	XR8001 XR11001 (100)	15 20 30 40 50 60	TH TH TH TH	F F F F F F
	XR80015 XR110015 (100)	15 20 30 40 50 60	и ттт <mark></mark>	HHHHHH
	XR8002 XR11002 (50)	15 20 30 40 50 60	ттт <mark>S</mark>	NTTTT
	XR80025 XR110025 (50)	15 20 30 40 50 60	ттт <mark>SS</mark>	NN TH TH
	XR8003 XR11003 (50)	15 20 30 40 50 60	н н н <mark>NN</mark>	M H H H H
	XR80035 (50)	15 20 30 40 50 60	NN NN FF	

	PSI	DR	OP
		80°	110
XR8004 XR11004 (50)	15 20 30 40 50 60	тт <mark>SSS</mark> n	NNNN FF
XR8005 XR11005 (50)	15 20 30 40 50 60		MMMMFF
XR8006 XR11006 (50)	15 20 30 40 50 60		
XR8008 XR11008 (50)	15 20 30 40 50 60	VV V× ××××××××××××××××××××××××××××××××	
XR8010† XR11010†	15 20 30 40 50 60	XVVVVV	VUU MMM
XR8015† XR11015†	15 20 30 40 50 60	XCXCVC	222000

80°

110°

Nozzle		Spr	av	Α	Clos	ser L	ook					GPA &	
Color	PSI	Qua	lity		Ту	/pe of	Nozz	le				MPH	
	0	110°XR/XRC		TTJ60	AIXR	AI3070	AITTJ60	110°AI/AIC	Π	GPM			
	PSI	15-60 PSI	15-90 PSI	20-90 PSI	15-90 PSI	20-90 PSI	20-90 PSI	30-115 PSI	15-100 PSI		4 mph	5 mph	6 mph
	20	F	С	-		-	-	-	-	0.071	5.3	4.2	3.5
1.000	30	F	М	-	-	-	-	-	-	0.087	6.5	5.2	4.3
01	40	F	М	-	-	-	-	-	-	0.10	7.4	5.9	5.0
Π	50	F	М	-	-	-	-	-	-	0.11	8.2	6.5	5.4
XR	60	VF	F	-		-	-			0.12	8.9	7.1	5.9
(100)	70	-	F	-	-	-	-	-	-	0.13	9.7	7.7	6.4
1.1.1	80	-	F	-	_	-	-	-	-	0.14	10.4	8.3	6.9
and the second	90	-	F	-	-	-	-	-	_	0.15	11.1	8.9	7.4
	20	F	С	-	VC	VC	-	-	UC	0.11	8.2	6.5	5.4
015	30	F	М	-	C	С	-	UC	UC	0.13	9.7	7.7	6.4
AL AIC AIVR	40	F	М		C	М	-	XC	UC	0.15	11.1	8.9	7.4
12070 TT TTI	50	F	М	=	М	M	-	VC	UC	0.17	12.6	10.1	8.4
	60	F	F	-	М	M	00	VC	XC	0.18	13.4	10.7	8.9
(100)	70		F	-	М	M	-	VC	XC	0.20	14.9	11.9	9.9
(100)	80	-	F	-	М	F		VC	XC	0.21	15.6	12.5	10.4
	90	-	F	-	М	F	-	С	XC	0.23	17.1	13.7	11.4
	PSI	15-60	15-90	20-90	15-90	20-90	20-90	30-115	15-100				

Variety and Selection

AIXR TeeJet® (AIXR)

		PSI										
	15	20	25	30	35	40	50	60	70	75	90	
AIXR110015	XC	XC	VC	С	С	С	С	М	M	Μ	М	
AIXR11002	XC	XC	XC	VC	VC	С	С	С	С	Μ	М	
AIXR110025	XC	XC	XC	XC	VC	VC	С	С	С	С	С	
AIXR11003	XC	XC	XC	XC	VC	VC	С	С	С	С	C	
AIXR11004	UC	XC	XC	XC	XC	XC	VC	VC	С	С	C	
AIXR11005	UC	XC	XC	XC	XC	XC	VC	VC	С	С	С	
AIXR11006	UC	XC	XC	XC	XC	XC	VC	VC	VC	С	С	

Turbo TeeJet® Induction (TTI)

	PSI											
Ų	15	20	25	30	35	40	50	60	70	80	90	100
TTI110015	UC	UC	UC	UC	UC	UC	UC	XC	XC	XC	XC	XC
TTI11002	UC	UC	UC	UC	UC	UC	UC	UC	XC	XC	XC	XC
TTI110025	UC	UC	UC	UC	UC	UC	UC	UC	XC	XC	XC	XC
TTI11003	UC	UC	UC	UC	UC	UC	UC	UC	XC	XC	XC	XC
TTI11004	UC	UC	UC	UC	UC	UC	UC	UC	XC	XC	XC	XC
TTI11005	UC	UC	UC	UC	UC	UC	UC	UC	XC	XC	XC	XC
TTI11006	UC	UC	UC	UC	UC	UC	UC	UC	XC	XC	XC	XC

DG TeeJet (DG)

ATA	PSI												
69	30	35	40	50	60								
DG80015	М	М	М	М	F								
DG8002	М	М	М	М	M								
DG8003	С	М	М	М	М								
DG8004	С	С	С	М	М								
DG8005	C	С	C	М	M								
DG110015	М	М	F	F	F								
DG11002	М	М	М	М	М								
DG11003	С	М	М	М	М								
DG11004	С	С	М	М	М								
DG11005	C	C	C	М	М								

Turbo TeeJet® (TT)

	15	20	25	30	35	40	50	60	70	80	90
TT11001	С	С	М	М	М	М	М	F	F	F	F
TT110015	VC	С	C	М	М	М	М	F	F	F	F
TT11002	VC	VC	С	С	М	М	М	М	F	F	F
TT110025	VC	VC	С	С	М	М	М	М	F	F	F
TT11003	VC	VC	С	C	С	С	М	М	М	М	F
TT11004	XC	VC	VC	С	C	С	М	М	М	М	М
TT11005	XC	VC	VC	VC	VC	С	С	М	М	М	М
TT11006	XC	VC	VC	VC	VC	VC	С	С	С	М	М
TT11008	XC	VC	VC	VC	VC	С	С	С	С	М	М

Droplet Sizes Vary Among Nozzle Types --- % of fines - less than 200 µm

⁺Figure 6. Comparison of percent of fine droplets (≤200 µm) for six non-venturi nozzles.

Thomas R. Butts, Annah M. Geyer, and Greg R. Kruger (2015) Department of Agronomy & Horticulture, University of Nebraska-Lincoln

XR Flat Fan Nozzle

Images from Spraying Systems

Turbo TeeJet Induction (TTI)

Older and Newer Nozzle Designs

Nozzle Comparison - 40 PSI Wind XR, AI, AIXR TeeJet[®]

©2009 Winfield Solutions, LLC

WINFIELD

©2016 Winfield Solutions, LLC

Pressure Comparison Wind - 10-80 PSI AI TeeJet®AI11002

©2009 Winfield Solutions, LLC

Causes of Spray Drift

- 1. Applicator Decision Maker
 - To Spray or Not to Spray to Stop Spraying
 - Equipment Set Up
 - Assesses the Weather
- 2. Equipment
 - Droplet Size
 - Tip orifice & angle
 - Spray Height
 - Operating Speed
- 3. Weather
 - Wind Direction
 - Air Flow or Wind Speed
 - Air Stability
 - Temperature and Humidity (drop size)

What Inspectors Need to Ascertain!

Spray Solution Changes Droplet Sizes

- Formulation
- Spray Adjuvants
 - -Spreaders, wetting agents
 - -Deposition aids
- Tank Mixes

©2012 Winfield Solutions, LLC. ALL RIGHTS RESERVED.

at

Spray Adjuvants

Some adjuvants hold droplets together, others breakup more easily!

Spray Comparison Wind - XR TeeJet®

©2009 Winfield Solutions, LLC

Herbicide Alone

Herbicide + InterLock[®]

Tank Mix Influences Droplet Size

Without drift reducing adjuvants--other adjuvants indicated by 'mix'

©2012 Winfield Solutions, LLC. ALL RIGHTS RESERVED.

Other Important Droplet Issues

Relative Span (RS)

- RS = (Dv0.9 Dv0.1) / VMD
- Dv0.9 = 400, VMD = 300, Dv0.1 = 100

 \succ Relative span = 1

• Dv0.9 = 650, VMD = 300, Dv0.1 = 50

 \succ Relative span = 2

• The narrower the RS, the greater precision

Spray Quality Ca							
ASABE Standa	ASABE Standard S-572.1						
Category (symbol)	Color Code						
Extra Fine (XF)	Purple						
Very Fine (VF)	Red						
Fine (F)	Orange						
Medium (M)	Yellow	Fungicides/Insecticides					
Coarse (C)	Blue						
Very Coarse (VC)	Green	Contact Herbicides					
Extra Coarse (XC)	White						
Ultra Coarse (UC)	Black	Systemic Herbicides					
	ASABE Standa Category (symbol) Extra Fine (XF) Very Fine (VF) Fine (F) Medium (M) Coarse (C) Very Coarse (VC) Extra Coarse (XC) Ultra Coarse (UC)	Spray Quality CategoriesASABE Standard S-572.1Category (symbol)Color CodeExtra Fine (XF)PurpleVery Fine (VF)RedFine (F)OrangeMedium (M)YellowCoarse (C)BlueVery Coarse (VC)GreenExtra Coarse (XC)WhiteUltra Coarse (UC)Black					

Why Use Different Spray Qualities Broadcast Nozzle Selection Guide

			HERBICIDE	s	FUNG	ICIDES	INSECT	ICIDES		
			POST-EM	ERGENCE					DRIFT MANAGE-	PWM
		SOIL	CONTACT	SYSTEMIC	CONTACT	SYSTEMIC	CONTACT	SYSTEMIC	MENT	CONTROL
	Air Induction Turbo TwinJet Reference page 17	VERY GOOD	GOOD	EXCELLENT	GOOD	EXCELLENT	GOOD	EXCELLENT	EXCELLENT	
1	AI3070 Reference page 18		VERY GOOD	VERY GOOD	EXCELLENT	VERY GOOD	EXCELLENT	VERY	EXCELLENT	
8	XR, XRC Teejet* Reference pages 12–13		EXCELLENT	GOOD	EXCELLENT	GOOD	EXCELLENT	GOOD	GOOD	EXCELLENT
8	XR, XRC Teejet at pressures below 30 PSI (2.0 bar) Reference pages 12–13	GOOD	GOOD	VERY GOOD	GOOD	VERY GOOD	GOOD	VERY GOOD	VERY GOOD	EXCELLENT
1	ALXR Teejet Reference page 8	VERY	GOOD	EXCELLENT	GOOD	EXCELLENT	GOOD	EXCELLENT	EXCELLENT	
16	AI, AIC Teefet Reference pages 9-10	VERY GOOD	GOOD	EXCELLENT	GOOD	EXCELLENT	GOOD	EXCELLENT	EXCELLENT	

Specia	pecialty			HERBICIDE	s	FUNG	ICIDES	INSECTICIDES		
Nozzle			POST-EMERGENCE							
Guide		SOIL APPLIED	CONTACT	SYSTEMIC	CONTACT	SYSTEMIC	CONTACT	SYSTEMIC		
		1	Al Teejet even Reference page 33	VERY GOOD	GOOD	EXCELLENT	GOOD	EXCELLENT	GOOD	EXCELLENT
		1	Teejet EVEN Reference page 35	GOOD	GOOD	GOOD	GOOD	GOOD	GOOD	GOOD
	SPRAVING	8	Twinfet EVEN Reference page 36		VERY GOOD		VERY GOOD		VERY GOOD	
	DIRECTED	1	AIUB Teefet- Reference page 37		GOOD	EXCELLENT	GOOD	EXCELLENT	GOOD	EXCELLENT
			AITX ConeJet Reference page 43		GOOD	EXCELLENT	GOOD	EXCELLENT	GOOD	EXCELLENT
			Conejet* Reference pages 32 & 39		EXCELLENT		EXCELLENT		EXCELLENT	
	LAST		Conejet Reference pages 40-43		EXCELLENT	GOOD	EXCELLENT	GOOD	EXCELLENT	GOOD
	AIRB		Disc-Core Reference pages 45-46		EXCELLENT	GOOD	EXCELLENT	GOOD	EXCELLENT	GOOD

Sprayers101 €

These water-sensitive papers were sprayed under controlled conditions and they demonstrate the role droplet size plays in coverage. As the droplets get finer, there are more of them, increasing coverage. However, this is really only hypothetical as many drift off target before impinging. As the droplets get coarser, there are less of them, and coverage may be compromised. To compensate for this, higher volumes are used. Credit – Dr. T. Wolf, Saskatchewan.

Sprayers 101 - T. Wolf

Driftable Droplets*

NOZZLE TYPE (0.50 GPM FLOW)	APPROXIMATE PERCENT OF SPRAY VOLUME LESS THAN 150 MICRONS				
	15 PSI	40 PSI			
XR – Extended Range TeeJet (110°)	19%	30%			
TT – Turbo TeeJet (110º)	4%	13%			
TTJ60 – Turbo TwinJet (110º)	3%	10%			
TF – Turbo FloodJet	2%	7%			
AIXR – Air Induction XR (110°)	2%	7%			
AITTJ60 – Air Induction Turbo TwinJet (110°)	1%	6%			
AI – Air Induction TeeJet (110º)	N/A	5%			
TTI – Turbo TeeJet Induction (110°)	<1%	2%			

*Data obtained from Oxford VisiSizer system spraying water at 70°F (21°C) under laboratory conditions.

The Old Guard – XR TeeJet – Extended Range

		() PSI	DR	OP	A
	-	T SI	80°	1100	~
XR 8001	XR8001 XR11001 (100)	15 20 30 40 50 60	TH TH TH TH	F F F F F	XI XR
XR 80015	XR80015 XR110015 (100)	15 20 30 40 50 60	<u>тттт</u>		XI XR
	XR8002 XR11002 (50)	15 20 30 40 50 60	ттт <mark>SS</mark>	NHHHW	XI
	XR80025 XR110025 (50)	15 20 30 40 50 60	<u>ытыты SN</u>	NN FFFFF	XI XR
XR 8003	XR8003 XR11003 (50)	15 20 30 40 50 60	н н н <mark>NN</mark>	NN FFFF	XR
	XR80035 (50)	15 20 30 40 50	MMMM F		XR XR

	PSI	DR SI	OP	
		80°	1100	
XR8004	15 20 30	C M M	M	YP
XR11004 (50)	40 50 60	MFE	MFF	8004
XR8005 XR11005	15 20 30 40		MMM	
(50)	50 60	M	FF	
XR8006 XR11006 (50)	15 20 30 40 50		MMMM	
XR8008 XR11008 (50)	15 20 30 40 50	×××××××××××××××××××××××××××××××××××××		XR 8008
XR8010† XR11010†	15 20 30 40 50 60	× × V V V V V V V V V V V V V V V V V V	≥Yuu <mark>×</mark> ×	
XR8015† XR11015†	15 20 30 40 50 60	XCXCVCC	SSS Consess	

AND			PSI										
ag	15	20	25	30	40	50	60						
XR8001	F	F	F	F	F	F	F						
XR80015	М	F	F	F	F	F	F						
XR8002	М	М	F	F	F	F	F						
XR80025	М	М	F	F	F	F	F						
XR8003	М	М	М	F	F	F	F						
XR80035	М	М	М	М	М	F	F						
XR8004	С	М	М	М	М	F	F						
XR8005	С	C	М	М	М	М	F						
XR8006	С	С	С	М	М	М	М						
XR8008	VC	VC	С	С	М	М	М						
XR8010	XC	VC	VC.	С	С	С	С						
XR8015	XC	XC	VC.	VC	VC	C	C						
XR11001	F	F	F	F	F	F	VF						
XR110015	F	F	F	F	F	F	F						
XR11002	М	F	F	F	F	F	F						
XR110025	М	M	F	F	F	F	F						
XR11003	М	М	М	F	F	F	F						
XR11004	М	М	М	М	М	F	F						
XR11005	М	М	М	М	М	F	F						
XR11006	С	М	М	М	М	М	F						
XR11008	С	С	С	C	М	М	М						
XR11010	VC	С	С	С	М	М	М						
XR11015	VC	VC	VC.	VC	С	С	C						

AIXR Teejet

DG Teejet

GP

Orchard and Vineyard – ConeJets

91			
	O PSI	DROP	CAF T NO
TXA800050VK TXB800050VK (100)	40 60 80 100 125	VF VF VF VF VF	
TXA800067VK TXB800067VK (50)	40 60 80 100 125	VF VF VF VF	
TXA8001VK TXB8001VK (50)	40 60 80 100 125	VF VF VF VF	
TXA80015VK TXB80015VK (50)	40 60 80 100 125	F F VF VF VF	
TXA8002VK TXB8002VK (50)	40 60 80 100 125	F F VF VF VF	
TXA8003VK TXB8003VK (50)	40 60 80 100 125	F F F VF VF	()()
TXA8004VK TXB8004VK (50)	40 60 80 100	F F F VF	()

8	()									GI	PM
U		30 PSI	40 PSI	50 PSI	60 PSI	70 PSI	80 PSI	90 PSI	100 PSI	120 PSI	140 PSI
TYNC	100	0.015	0.017	0.018	0.020	0.021	0.022	0.023	0.024	0.026	0.028
14-451 100	100	VF	VF	VF							
TY.VC2	100	0.029	0.033	0.037	0.040	0.043	0.045	0.047	0.050	0.054	0.058
14-422 100	100	VF	VF	VF							
TY.WZ	100	0.044	0.050	0.055	0.060	0.064	0.068	0.071	0.075	0.081	0.086
IV-AK2	100	F	VF	VF	VF						
TYNKA	50	0.058	0.067	0.074	0.080	0.086	0.091	0.096	0.101	0.110	0.118
17-44 20	F	VF	VF								
TYAKS	50	0.088	0.100	0.111	0.120	0.129	0.137	0.145	0.152	0.165	0.177
TX-VK0	U.	F	F	VF	VF	VF	VF	VF	VF	VF	VF
TY.VKR	50	0.116	0.133	0.148	0.162	0.174	0.186	0.196	0.207	0.225	5 0.177 VF 5 0.243
17.440	50	F	F	VF	VF	VF	VF	VF	VF	VF	VF
TX-VK10	50	0.145	0.167	0.185	0.202	0.218	0.232	0.246	0.258	0.282	0.303
TA-VICIO	50	F	F	F	F	VF	VF	VF	VF	VF	VF
TX-VK12	50	0.174	0.200	0.223	0.243	0.261	0.279	0.295	0.310	0.338	0.364
TA-MAIL	20	F	F	F	F	VF	VF	VF	VF	VF	VF
TX-VK18	50	0.260	0.300	0.335	0.367	0.396	0.423	0.449	0.473	0.517	0.558
TAVINIO	UL.	F	F	F	F	F	F	VF	VF	VF	VF
TY.VK26	50	0.376	0.433	0.484	0.530	0.572	0.611	0.648	0.683	0.747	VF 0.118 VF 0.177 VF 0.243 VF 0.303 VF 0.304 VF 0.364 VF 0.558 VF 0.807 VF
14-4420	50	F	F	F	F	F	F	VF	VF	VF	VF

Aerial and Ground Droplet Calculators

ASABE S572.1 Droplet Size Classification

The American Society of Agricultural and Biological Engineers (ASABE) developed the ASABE 5572.1 standard to measure and interpret spray quality from Sps.

Spray Costby"	Riss of Dropieds	VMD Rumps Microsoft	Criter Eville	Renardian ant	these Tes	Dert
Extremely Fine	Small	<60	Purple	Excellent	Exceptions	High
Very Fine		61-105	Red	Excellent	Exceptions	
Fine		106-235	Orange	Very Good	Good Cover	
Mediam		236-340	Yellow	Good	Most Products	
Coarse	1	341-403	Bue	Moderate	Bystemic Herbickles	1
Very Coarse	X	404-502	Green	Paor	Soil Harbicides	
Extremely Caarse		\$03-665	White	Very Poor	Liquid Fertilizer	
Uttra Coarse	Large	≻665	Black.	Very Poor	Liquid Fertilizer	Low

"Always road the peopleide label to determine which spray quality is required.

"Estimated from sample reference graph in ASABEIANSI/ASAE Standard 5572.1

ASABE 5772.1 standard uses eight droplet classification categories, six of which are common for agriculture and horticulture:

Most agrochemical applications recommend a fine, medium, or coarse spray:

contract law

PREP Archive

Acknowledgement

- Thanks to Bob Wolf, Wolf Consulting LLC, Kansas State University, University of Illinois
- Thanks to Teejet and Winfield Solutions

Disclaimer

- Brand names appearing in this presentation are for education and illustration purposes only.
- No endorsement is intended, not is criticism implied of similar products not mentioned.

Thank Yo